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Abstract The Schwinger boson mean-field k r i e s  of lhe ‘7-3’ model are extended by the 
consideration of anisotropic order parameters. This has two effects: litst, a collinear phase in 
which the spins are antiferrornagnetidly aligned in one direction and ferromagnetically aligned 
in the other, is found lo be stable over a significant range of the phase diagram; second, Lhe 
(1, I )  and (1,O) spiral phases temme very close in energy. The inclusion of weak intrasublattice 
coupling may therefore stabilirc the (1.0) spiral with respect to the (1.1) spiral, lhus harmonizing 
themy and experimenl. 

1. Introduction 

It is both experimentally and theoretically established that the undoped high-temperature 
superconductors are described by a two-dimensional (ZD) spin f Heisenberg antiferromagnet. 
Three-dimensional coupling stabilizes the long-range N&l order to temperatures of roughly 
300 K. Upon doping, however, the long-range order is soon destroyed to be replaced 
by short-range antiferromagetic correlations, which are either incommensurate, as in 
Laz-,Sr,CuO4 [I], or commensurate, as in YBazCu307-s. for example. 

There have been many theoretical attempts to explain this behaviour. One approach is 
to treat the spins semi-classically. The hole motion then leads to a (1, I )  spiral distoltion of 
the spin background [2,3]. Another approach is a weak coupling RPA calculation in which 
the most divergent terms in the magnetic susceptibilty arise from the Fermi surface nesting 
wavevectors [4]. This approach has the virtue of explicitly building in the Fermi surface 
structure, and hence is easily able to explain the discrepancies between different compounds 
from their different Fermi surfaces. However, it implicitly assumes the underlying existence 
of a Fermi liquid, which is somewhat at variance with normal state transport properties. 

A further approach is to take the strong coupling limit and to use a slave representation 
to explicitly prohibit double occupancy. Of the two (formally equivalent) representations 
we elect to use the slave fermionSchwinger boson representation in which the fermion 
degree of fteedom controls the occupancy. This method correctly predicts long-range 
antiferromagnetism at half filling, and the Nagaoka ferromagnet for infinitesimally small 
doping and infinite coupling, so it is a natural starting point when considering doping. 

The Schwinger boson method has been used previously to study the mean-field theory 
of the ‘f-J’ model [SI (which we define shortly). It was found that doping leads to an 
incommensurate spiral along the (1,l) direction, which is in contrast to the experimental 
results of Cheong et al [ I ]  who found incommensurate spirals along the (1.0) direction. The 
inclusion of a next-nearest-neighbour hopping term, however, leads to the stabilization of 
the (1.0) spiral for some parameter ranges [6]. The mean-field theory without fluctuations 
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also predicts long-range order for most doping values, whereas short-range correlations are 
observed. later work has shown that the long-range order is destroyed by the fluctuations 
[7]. This theory therefore seems a promising one for a complete explanation of the phase 
diagram. 

In most of the mean-field analyses it is customary to assume that the order parameters are 
isotropic. However, if this restriction is relaxed new phases are found which are energetically 
favourable. In particular, we find that there is a phase transition from the ( I ,  1) spiral to 
a collinear phase, in which the spins are antiferromagneticaly aligned in one direction and 
ferromagnetically aligned in the other, before-the onset of ferromagnetism. Furthermore, 
the energy of the (1.0) spiral becomestery close to that of the ( I ,  I )  spiral. The plan of this 
paper is as follows: first we intfoduce the '14' model to establish notation; then, in section 
2, we describe the Schwinger boson mean-field method. Section 3 contains our results, and 
we conclude in section 4. 

The 'U model may be obtained from the Hubbard Hamiltonian by formally projecting 
out double occupied states, but allowing virtual states of double occupancy. This leads to 
a Heisenberg exchange term with a coupling constant, J = 412/U. It is more convenient, 
however, to treat this as a model Hamiltonian with f and J as independent variables. The 
'td' model then reads: 

W Barford and S Jadhav 

/-- 

where HC stands for Hermitian conjugate, and where E,, acts only in the empty and singly 
occupied subspace, and is defined as (1 -ni+)ci,. The sum, (ij), is over nearest neighbours. 

With the introduction of the singlet operator, 

equation (1) can be rewritten as 

2. Mean-field analysis 

To handle the constraint of no double occupancy we adopt the slave fermion representation 
whereby the physical electron operator is factorized into a spinless fermion f i ,  and the 
SU(2) Schwinger boson b;,, i.e. 

t = fi bi, . 

The fermions and bosons necessarily satisfy the constraint 
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and so we may therefore identify the At as creating a hole and bjo as creating a spin on 
the ith site. Using this representation (2) then becomes 

where 81; = $E,, sgn(a)hj,bj+. 

field order parameters [8] 
We use the saddle point approximation to solve (3). and introduce the following mean- 

and 

Dij (Ah). (4d 

Qi, is a measure of the ferromagnetic alignment between neighbouring spins. This is 
illustrated by noting that for classical spins represented by the unit vectors h it is given by 
P I  

where !%hi, hj: 2) is the solid angle spanned by the two spins and the global axis of 
quantization. 6 is the hole concentration, so (1 - 6 )  is a mean-field estimate of the average 
local spin concentration. f i j  is a measure of the bosonic band width, while Dij is the 
singlet order parameter, and hence measures the antiferromagnetic alignment All of the 
order parameters are assumed to be translationally invariant, with Q and F being even and 
D being odd under a space inversion. 

In general, we are at liberty to choose the ratio of Q ,  and Qs and allow 0,. D,, F, 
and Fs to be determined self-consistently. Setting this ratio to unity results in the (1, I )  
spiral, while setting it to zero results in the (1.0) spiral. Alternatively, we can choose 
the ratio of D, and D,, while the other four order parameters are then self-consistently 
determined. In particular, setting this ratio to zero results in the collinear phase. The term 
J(l  - f / f i ) ( l  - fjfj) is replaced by its mean-field value JS = J(l - QZ. 

By decoupling (3) with these order parameters the spin and charge degrees are freedom 
are decoupled and the following Hamiltonians for the charge and spin degrees of freedom 
are obtained 

and 
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Notice that (6a) and (6b) have been defined in the grand canonical ensemble to ensure that 
the constraints ( f / f i }  = 6 (= hole doping) and C,(bi,,bi,,} = I - 6  are satisfied on the 
average. This is done via the introduction of the fermionic and bosonic chemical potentials, 
hf and Ab, respectively. We define 

U‘ Batford and S Jadhav 

Mk = 2 [ (F,r + y) cos kz + ( Fyt + v) cos kl] (7) 

and 

yk = &iJa(D,sink, -I- D,sinky). (8) 

The fennionic Hamiltonian is trivially diagonalized giving the spectrum: 

ckf = -2t(Q,cosk, + Q,cosk,) (9) 

while the bosonic Hamiltonian is diagonalized via a Boguilobov transformation. This must 
be handled with care because of the possibility of a gapless spectrum and hence Bose- 
Einstein condensation at zero temperature. For the wavevectors at which Bose-Einstein 
condensation does nor occur a non-unitary transformation is employed 191 which yields the 
eigenfunctions 

and corresponding eigenvalues 

where & = (Ah + M ~ ) / E ;  and B is the phase of y .  The operators ai and flL obey bosonic 
commutation relations. 

If there exist wavevectors where the spectrum is gapless, however, a unitary 
transformation is required to diagonalize the Hamiltonian (6b). The eigenfunctions are. 
then 

with eigenvalues of 2 5  and 0. These operators obey the commutation relations, [ck, dl = 
[qk, q;] = 0 and [Ck, si]  = til = 1. The occupation of the Bose condensate. is given 
by ng = Z k ( q i q k ) .  As usual, the occurence of Bose-Einstein condensation means that the 
bosonic chemical potential is specified. In particular, 

with the condensed modes being at 
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The physical interpretation of a gapless spectrum and BowEinstein condensation is that 
it signifies long-range magnetic order. The condensed bosons correspond to the classical 
spin component, while the normal bosons represent the zero-point quantum mechanical 
fluctuations. The pitch of the classical spiral is 2(K,0, K j ) ,  which is readily related to the 
classical angle, 0 (equation (5)). Absence of a Bose-Einstein condensate implies that the 
quantum mechanical fluctuations are dominant, leading to a disordered spin liquid with no 
long-range correlations. 

Having determined the eigensolutions of (3) the self-consistent equations for the order 
parameters are obtained. These are, at zero temperature: 

and 

If Bose-Einstein condensation does exist (13a) can be regarded as defining no with hb 
defined by (12). Otherwise, it defines Ab. (13e) is a sum up to the Fermi wavevector for 
the fermions, and hence defines Ar. The equations (13) are solved numerically, with the 
ground-state mean-field energy per site being given by [XI, 

Em = - t (Q,F,  + Q y F y )  - JdD,” + D:) + JdQ: + @/4. ( 14) 

The resulting phase diagram is discussed in the next section. 

3. The phase diagram 

Figure I shows the diagram associated with the mean-field phases which minimize the 
energy. For zero doping the ZD Heisenberg antiferromagnet is stable. As holes are doped 
into the antiferromagnet the (1.1) spiral develops. However, we note that the (1,O) spiral 
is also very close in energy, ifisotropic D is not assumed. For !arge,r/J there is a rapid 
decrease in the classical nearest neighbour angle, 0ij = cos-’(Q . nj)+ while for small 
t / J  the spins remain nearly antifemmagnetically aligned for quite large doping. Figure 2 
illustrates the nearest neighbour classical angle as a function of doping for t / J  = 2.0. For 
small deviations from Nkel order the classical angle is given approximately by 

Hf 

2 5  
H - b?] N -4. 
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=..~ \ ferromagnet 
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Figure 1. Mean-field phase diagram of lhe ' 1 4 '  modet 7he broken curve indicates the phase 
boundary line belween he (1. I )  spiral and he flux phase as taken fmm (61. 

Neutron scattering experiments would therefore give Bragg peaks at Q vectors rr(l f 
t8/v'??J, 1 ic t S / & J ) ,  which, although being in the wrong direction, have magnitudes 
in close agreement with experimental Q vectors of n(l f 26, I )  and n(l.1 f 26) for 
La~-,Sr,CuO4 [I]. 

By allowing the order parameters to be anisotropic we find new energetically favourable 
phases. In particular, if one of the components of D is chosen to be zero, then the component 
of Q in the orthogonal direction is zero. This is the collinear phase in which the spins are 
aligned antiferromagnetically in one direction and ferromagnetically in the other. As the 
doping in increased there is a first-order transition to this collinear phase from the (1, I)  
spiral. The collinear phase is stable for quite high doping before a further first-order phase 
transition to the ferromagnet phase occurs. 

Chakraborty et al [6] introduced the so-called 'flux phase' which breaks time reversal 
invariance: D, = iD,. They showed that this phase is more stable than the Nagaoka 
ferromagnet. Unfortunately, we were unable to find reliable mean-field solutions of this 
phase to test it against the collinear phase. However, the dashed line in figure 1 indicates 
the phase boundary line between the ( I ,  1) spiral and the flux phase as taken from [6]t. 
The position of this line indicates that the collinear phase is stable with respect to the (1, 1) 
spiral in parameter ranges where the flux phase is not stable 

Bose-Einstein condensation occurs in most regions of the phase diagram ,which implies 
long-range order. Figure 2 shows the fraction of condensed (i.e. classical) spins as a 
function of doping, defined by h o / N  + S. As the doping is increased, and the spins 
become more ferromagnetically aligned, the classical component of the spins increases 
so that at the ferromagnetic regime there are no zero-point fluctuations. Notice that 
there are discontinuities in the condensed fraction at the phase boundaries. Bose-Einstein 
condensation is, however, an artefact of the mean-field calculation. If fluctuations in the 

t These data were taken from 161 assuming that the J used in thei calculation is the mean-field value of J i.e. 
J ( l  
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hole doping 
Figure 2. The nearest-neighbur classical angle, .9,,/n (broken line), and h e  fraction of 
condensed (classical) spins (full curve) versus doping for r / J  = 2.0. Note that in the collinear 
region Oij is n in one direction and 0 in the orthogonal direction. 

phase of (Alj) are taken into account, which arise from the holes hopping across bonds, 
then long-range phase coherence would presumably be lost. 

4. Conclusions 

We have extended the Schwinger boson mean-field theories of the 't-J' model by allowing 
for anisotropic order parameters. This has two effects. First, the (1, 1) and (1.0) spiral 
phases are now very close in energy. The inclusion of arbitrarily weak intrasublattice 
coupling may therefore stabilize the (1,O) spiral with respect to the ( I ,  I )  spiral, in agreement 
with the experimental observations. Second, a collinear phase, in which the spins are 
antifemomagnetically aligned in one direction and fermmagnetically aligned in the other, is 
found to be stable over a significant range of the phase diagram. 
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